https://confrencea.org November 15 ${ }^{\text {th }} 2022$
 QUADRATIC EQUATIONS OR TRIGONOMETRY IN MATHEMATICS Baqoyev Ozod

Where x represents an unknown value, and a, b, and c represent known numbers. One supposes generally that $a \neq 0$; those equations with $a=0$ are considered degenerate because the equation then becomes linear or even simpler. The numbers a, b, and c are the coefficients of the equation and may be distinguished by calling them, respectively, the quadratic coefficient, the linear coefficient and the constant or free term.

The values of x that satisfy the equation are called solutions of the equation, and roots or zeros of the expression on its left-hand side. A quadratic equation has at most two solutions. If there is only one solution, one says that it is a double root. If all the coefficients are real numbers, there are either two real solutions, or a single real double root, or two complex solutions that are complex conjugates of each other. A quadratic equation always has two roots, if complex roots are included; and a double root is counted for two. A quadratic equation can be factored into an equivalent equation.

Solutions to problems that can be expressed in terms of quadratic equations were known as early as 2000 BC .

Because the quadratic equation involves only one unknown, it is called "univariate". The quadratic equation contains only powers of x that are non-negative integers, and therefore it is a polynomial equation. In particular, it is a second-degree polynomial equation, since the greatest power is two.

It may be possible to express a quadratic equation $a x^{2}+b x+c=0$ as a product ($p x+$ $q)(r x+s)=0$. In some cases, it is possible, by simple inspection, to determine values of p, q, r, and s that make the two forms equivalent to one another. If the quadratic equation is written in the second form, then the "Zero Factor Property" states that the quadratic equation is satisfied if $p x+q=0$ or $r x+s=0$. Solving these two linear equations provides the roots of the quadratic.

For most students, factoring by inspection is the first method of solving quadratic equations to which they are exposed.

If one is given a quadratic equation in the form $x^{2}+b x+c=0$, the sought factorization has the form $(x+q)(x+s)$, and one has to find two numbers q and s that add up to b and whose product is c (this is sometimes called "Vieta's rule" and is related to Vieta's formulas).

As an example, $x^{2}+5 x+6$ factors as $(x+3)(x+2)$. The more general case where a does not equal 1 can require a considerable effort in trial and error guess-and-check, assuming that it can be factored at all by inspection.

Except for special cases such as where $b=0$ or $c=0$, factoring by inspection only works for quadratic equations that have rational roots. This means that the great majority of quadratic equations that arise in practical applications cannot be solved by factoring by inspection.
The process of completing the square makes use of the algebraic identity
which represents a well-defined algorithm that can be used to solve any quadratic equation.
Starting with a quadratic equation in standard form, $a x^{2}+b x+c=0$

1. Divide each side by a, the coefficient of the squared term.
2. Subtract the constant term c / a from both sides.
3. Add the square of one-half of b / a, the coefficient of x, to both sides. This "completes the square", converting the left side into a perfect square.
4. Write the left side as a square and simplify the right side if necessary.
5. Produce two linear equations by equating the square root of the left side with the positive and negative square roots of the right side.
6. Solve each of the two linear equations.

We illustrate use of this algorithm by solving $2 x^{2}+4 x-4=0$
1.Ашурова 3. Р., Жураева Н. Ю., Жураева У. Ю. Функция Карлемана для полигармонических функций определенных в некоторых областей лежащих в некоторых четном n-мерном евклидовом пространстве //Операторные алгебры и смежные проблемы. - 2012. - С. 100-101.
2.Raximovna A. Z., Yunusovna J. N., Yunusalievna J. U. Task Cauchy and Carleman Function //Texas Journal of Multidisciplinary Studies. - 2021. - T. 1. - No. 1. - C. 228231.
3.Raximovna A. Z., Yunusovna J. N. Some Estimates For The Carleman Function //The American Journal of Applied sciences. - 2021. - T. 3. - №. 06. - C. 77-81.
4.Ашурова 3. Р. и др. ОЦЕНИВАЕТСЯ ФУНКЦИЯ КАРЛЕМАНА ДЛЯ ПОЛИГАРМОНИЧЕСКИХ ФУНКЦИЙ ВТОРОГО ПОРЯДКА, ОПРЕДЕЛЕННЫХ В ОБЛАСТИ ТРЕХМЕРНОГО ПРОСТРАНСТВА //Science and Education. - 2021. T. 2. - №. 2. - C. 17-21.
5.Yunusovna J. N., Juraeva A. Z. R., Yunusalievna U. Growing polyharmonic functions and the Cauchy problem //Journal of Critical Reviews. - 2020. - T. 7. - No. 7. - C. 371378.
6.Saparov A. T. Problems of physical education in the creation period of the friend "forty girls" //ACADEMICIA: An International Multidisciplinary Research Journal. - 2022. T. 12. - №. 5. - C. 670-672.
7.Saparov A. T. Formation of high moral qualities in the epic" forty girls". - 2021.
8.Abdullaevna T. K. et al. Speech Deficiencies In Preschool Children And Methods Of Correcting Them //European Journal of Molecular \& Clinical Medicine. - 1971. - T. 7. №. 03. - C. 2020.
9.Alfirovich M. T., Ogli S. K. S. COURAGE OF UZBEK PEOPLE IN THE BATTLE ON THE THRESHOLD OF STALINGRAD //Archive of Conferences. - 2021. - C. 100103.
10.Мирзаев Т. А. Ватанпарварлик Туйғуси-Олий Фазилат //Conference Zone. - 2022. - C. 52-53.
11.Мирзаев Т. А. РАЗВИТИЕ КОММУНИКАТИВНОЙ КОМПЕТЕНТНОСТИ У ОБУЧАЕМЫХ В УСЛОВИЯХ ЦИФРОВИЗАЦИИ ОБРАЗОВАНИЯ КАК
ПЕДАГОГИЧЕСКАЯ ПРОБЛЕМА //Наука и образование сегодня. - 2022. - №. 2 (71). - С. 78-80.

